Weakly Supervised Object Localization with Stable Segmentations

نویسندگان

  • Carolina Galleguillos
  • Boris Babenko
  • Andrew Rabinovich
  • Serge J. Belongie
چکیده

Multiple Instance Learning (MIL) provides a framework for training a discriminative classifier from data with ambiguous labels. This framework is well suited for the task of learning object classifiers from weakly labeled image data, where only the presence of an object in an image is known, but not its location. Some recent work has explored the application of MIL algorithms to the tasks of image categorization and natural scene classification. In this paper we extend these ideas in a framework that uses MIL to recognize and localize objects in images. To achieve this we employ state of the art image descriptors and multiple stable segmentations. These components, combined with a powerful MIL algorithm, form our object recognition system called MILSS. We show highly competitive object categorization results on the Caltech dataset. To evaluate the performance of our algorithm further, we introduce the challenging Landmarks-18 dataset, a collection of photographs of famous landmarks from around the world. The results on this new dataset show the great potential of our proposed algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weakly Supervised Learning of Object Segmentations from Web-Scale Video

We propose to learn pixel-level segmentations of objects from weakly labeled (tagged) internet videos. Specifically, given a large collection of raw YouTube content, along with potentially noisy tags, our goal is to automatically generate spatiotemporal masks for each object, such as “dog”, without employing any pre-trained object detectors. We formulate this problem as learning weakly supervis...

متن کامل

Self-Transfer Learning for Fully Weakly Supervised Object Localization

Recent advances of deep learning have achieved remarkable performances in various challenging computer vision tasks. Especially in object localization, deep convolutional neural networks outperform traditional approaches based on extraction of data/task-driven features instead of handcrafted features. Although location information of regionof-interests (ROIs) gives good prior for object localiz...

متن کامل

Seed, Expand and Constrain: Three Principles for Weakly-Supervised Image Segmentation

We introduce a new loss function for the weakly-supervised training of semantic image segmentation models based on three guiding principles: to seed with weak localization cues, to expand objects based on the information about which classes can occur in an image, and to constrain the segmentations to coincide with object boundaries. We show experimentally that training a deep convolutional neur...

متن کامل

C-WSL: Count-guided Weakly Supervised Localization

We introduce a count-guided weakly supervised localization (C-WSL) framework with per-class object count as an additional form of image-level supervision to improve weakly supervised localization (WSL). C-WSL uses a simple count-based region selection algorithm to select highquality regions, each of which covers a single object instance at training time, and improves WSL by training with the se...

متن کامل

Multi-Evidence Filtering and Fusion for Multi-Label Classification, Object Detection and Semantic Segmentation Based on Weakly Supervised Learning

Supervised object detection and semantic segmentation require object or even pixel level annotations. When there exist image level labels only, it is challenging for weakly supervised algorithms to achieve accurate predictions. The accuracy achieved by top weakly supervised algorithms is still significantly lower than their fully supervised counterparts. In this paper, we propose a novel weakly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008